The Effect of Thermal Radiation on Entropy Generation Due to Micro-Polar Fluid Flow Along a Wavy Surface

نویسندگان

  • Cha'o-Kuang Chen
  • Yue-Tzu Yang
  • Kuei-Hao Chang
چکیده

In this study, the effect of thermal radiation on micro-polar fluid flow over a wavy surface is studied. The optically thick limit approximation for the radiation flux is assumed. Prandtl’s transposition theorem is used to stretch the ordinary coordinate system in certain directions. The wavy surface can be transferred into a calculable plane coordinate system. The governing equations of micro-polar fluid along a wavy surface are derived from the complete Navier-Stokes equations. A simple transformation is proposed to transform the governing equations into boundary layer equations so they can be solved numerically by the cubic spline collocation method. A modified form for the entropy generation equation is derived. Effects of thermal radiation on the temperature and the vortex viscosity parameter and the effects of the wavy surface on the velocity are all included in the modified entropy generation equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Thermal Conductivity and Thermal Radiation Effect on the Motion of a Micro Polar Fluid over an Upper Surface

The intent of this analysis is to explore the influence of thermal radiation paired with variable thermal conductivity on MHD micropolar fluid flow over an upper surface. The novelty of the present model is to consider the fluid flow along an upper horizontal surface of a paraboloid of revolution (uhspr) with the porous medium.  This physical phenomenon is described by a set of coupled...

متن کامل

Entropy generation in hydromagnetic and thermal boundary layer flow due to radial stretching sheet with Newtonian heating

The entropy generation during hydromagnetic boundary layer flow of a viscous incompressible electrically conducting fluid due to radial stretching sheet with Newtonian heating in the presence of a transverse magnetic field and the thermal radiation has been analyzed. The governing equations are then solved numerically by using the fourth order Runge-Kutta method with shooting technique. The eff...

متن کامل

Entropy Generation of Variable Viscosity and Thermal Radiation on Magneto Nanofluid Flow with Dusty Fluid

The present work illustrates the variable viscosity of dust nanofluid runs over a permeable stretched sheet with thermal radiation. The problem has been modelled mathematically introducing the mixed convective condition and magnetic effect. Additionally analysis of entropy generation and Bejan number provides the fine points of the flow. The of model equations are transformed into non-linear or...

متن کامل

Influence of inclined Lorentz forces on entropy generation analysis for viscoelastic fluid over a stretching sheet with nonlinear thermal radiation and heat source/sink

In the present study, an analytical investigation on the entropy generation examination for viscoelastic fluid flow involving inclined magnetic field and non-linear thermal radiation aspects with the heat source and sink over a stretching sheet has been done. The boundary layer governing partial differential equations were converted in terms of appropriate similarity transformations to non-line...

متن کامل

Natural Convection and Entropy Generation in Γ-Shaped Enclosure Using Lattice Boltzmann Method

This work presents a numerical analysis of entropy generation in Γ-Shaped enclosure that was submitted to the natural convection process using a simple thermal lattice Boltzmann method (TLBM) with the Boussinesq approximation.  A 2D thermal lattice Boltzmann method with 9 velocities, D2Q9, is used to solve the thermal flow problem. The simulations are performed at a constant Prandtl number (Pr ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2011